3 research outputs found

    Nonlinear acoustic and microwave absorption in disordered semiconductors

    Full text link
    Nonlinear hopping absorption of ultrasound and electromagnetic waves in amorphous and doped semiconductors is considered. It is shown that even at low amplitudes of the electric (or acoustic) field the nonlinear corrections to the relaxational absorption appear anomalously large. The physical reason for such behavior is that the nonlinear contribution is dominated by a small group of close impurity pairs having one electron per pair. Since the group is small, it is strongly influenced by the field. An external magnetic field strongly influences the absorption by changing the overlap between the pair components' wave functions. It is important that the influence is substantially different for the linear and nonlinear contributions. This property provides an additional tool to extract nonlinear effects.Comment: correction : misspelled name in references correcte

    Images and nonlocal vortex pinning in thin superfluid films

    Full text link
    For thin films of superfluid adsorbed on a disordered substrate, we derive the equation of motion for a vortex in the presence of a random potential within a mean field (Hartree) description of the condensate. The compressible nature of the condensate leads to an effective pinning potential experienced by the vortex which is nonlocal, with a long range tail that smoothes out the random potential coupling the condensate to the substrate. We interpret this nonlocality in terms of images, and relate the effective potential governing the dynamics to the pinning energy arising from the expectation value of the Hamiltonian with respect to the vortex wavefunction.Comment: 19 pages, revtex, to appear Phys. Rev.

    Transport Properties of Mixed-Valence Manganites

    No full text
    corecore